先来看几个问题吧。

1.什么是树状数组?

顾名思义,就是用数组来模拟树形结构呗。那么衍生出一个问题,为什么不直接建树?答案是没必要,因为树状数组能处理的问题就没必要建树。和TrieTrie树的构造方式有类似之处。

2.树状数组可以解决什么问题

可以解决大部分基于区间上的更新以及求和问题。

3.树状数组和线段树的区别在哪里

树状数组可以解决的问题都可以用线段树解决,这两者的区别在哪里呢?树状数组的系数要少很多,就比如字符串模拟大数可以解决大数问题,也可以解决1+11+1的问题,但没人会在1+11+1的问题上用大数模拟。

4.树状数组的优点和缺点

修改和查询的复杂度都是O(logN)O(logN),而且相比线段树系数要少很多,比传统数组要快,而且容易写。

缺点是遇到复杂的区间问题还是不能解决,功能还是有限。

一、树状数组介绍

二叉树大家一定都知道,如下图


每个位置只有一个方框,令每个位置存的就是子节点的值的和,则有

C[1]=A[1];C[1] = A[1];

C[2]=A[1]+A[2];C[2] = A[1] + A[2];

C[3]=A[3];C[3] = A[3];

C[4]=A[1]+A[2]+A[3]+A[4];C[4] = A[1] + A[2] + A[3] + A[4];

C[5]=A[5];C[5] = A[5];

C[6]=A[5]+A[6];C[6] = A[5] + A[6];

C[7]=A[7];C[7] = A[7];

C[8]=A[1]+A[2]+A[3]+A[4]+A[5]+A[6]+A[7]+A[8];C[8] = A[1] + A[2] + A[3] + A[4] + A[5] + A[6] + A[7] + A[8];

可以发现,这颗树是有规律的。

C[i]=A[i2k+1]+A[i2k+2]+...+A[i];C[i] = A[i - 2^k+1] + A[i - 2^k+2] + ... + A[i]; //k为i的二进制中从最低位到高位连续零的长度

例如i = 8(1000)时候,k = 3,可自行验证。

这个怎么实现求和呢,比如我们要找前7项和,那么应该是SUM=C[7]+C[6]+C[4];SUM = C[7] + C[6] + C[4];

而根据上面的式子,容易的出SUMi=C[i]+C[i2k1]+C[(i2k1)2k2]+.....;SUM_i= C[i] + C[i-2^{k1}]+C[(i - 2^{k1}) - 2^{k2}]+ .....;

其实树状数组就是一个二进制上面的应用。

现在新的问题来了2k2^k该怎么求呢,不难得出2k=i2^k = i&\&(ii1);(i^{i-1});但这个还是不好求出呀,前辈的智慧就出来了,2k2^k = i&\&(i);(-i);

为什么呢?

这里利用的负数的存储特性,负数是以补码存储的,对于整数运算 xx&\&(x)(-x)

x0时,即0&0,结果为0当x为0时,即0\&0,结果为0;

●当xx为奇数时,最后一个比特位为1,取反加1没有进位,故xxx-x除最后一位外前面的位正好相反,按位与结果为00。结果为11

●当xx为偶数,且为22的m次方时,x的二进制表示中只有一位是1(从右往左的第m+1位),其右边有m位0,故x取反加1后,从右到左第有m个0,第m+1位及其左边全是1。这样,x& (-x) 得到的就是x。

●当x为偶数,却不为2的m次方的形式时,可以写作x= y * (2k2^k)。其中,y的最低位为1。实际上就是把x用一个奇数左移k位来表示。这时,x的二进制表示最右边有k个0,从右往左第k+1位为1。当对x取反时,最右边的k位0变成1,第k+1位变为0;再加1,最右边的k位就又变成了0,第k+1位因为进位的关系变成了1。左边的位因为没有进位,正好和x原来对应的位上的值相反。二者按位与,得到:第k+1位上为1,左边右边都为0。结果为2k2^k

总结一下:x&(-x),当x为0时结果为0;x为奇数时,结果为1;x为偶数时,结果为x中2的最大次方的因子。

而且这个有一个专门的称呼,叫做lowbitlowbit,即取2k2^k

二、如何建立树状数组

上面已经解释了如何用树状数组求区间和,那么如果我们要更新某一个点的值呢,还是一样的,上面说了C[i]=A[i2k+1]+A[i2k+2]+...+A[i]C[i] = A[i - 2^k+1] + A[i - 2^k+2] + ... + A[i],那么如果我们更新某个A[i]A[i]的值,则会影响到所有包含有A[i]A[i]位置。如果求A[i]A[i]包含哪些位置里呢,同理有

$A[i] $包含于 C[i+2k]C[(i+2k)+2k]...C[i + 2^k]、C[(i + 2^k) + 2^k]...;

好,现在已经搞清楚了更新和求和,就可以来建树状数组了。如果上面的求和、更新或者lowbit步骤还没搞懂的化,建议再思考弄懂再往下看。

那么构造一个树状数组则为

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
int n;
int a[1005],c[1005]; //对应原数组和树状数组

int lowbit(int x){
return x&(-x);
}

void updata(int i,int k){ //在i位置加上k
while(i <= n){
c[i] += k;
i += lowbit(i);
}
}

int getsum(int i){ //求A[1 - i]的和
int res = 0;
while(i > 0){
res += c[i];
i -= lowbit(i);
}
return res;
}

这样就构造了一个树状数组。下面看一道模板题目吧。

题目链接:https://vjudge.net/problem/HDU-1166

直接看代码吧

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#include <bits/stdc++.h>
using namespace std;

int n,m;
int a[50005],c[50005]; //对应原数组和树状数组

int lowbit(int x){
return x&(-x);
}

void updata(int i,int k){ //在i位置加上k
while(i <= n){
c[i] += k;
i += lowbit(i);
}
}

int getsum(int i){ //求A[1 - i]的和
int res = 0;
while(i > 0){
res += c[i];
i -= lowbit(i);
}
return res;
}

int main(){
int t;
cin>>t;
for(int tot = 1; tot <= t; tot++){
cout << "Case " << tot << ":" << endl;
memset(a, 0, sizeof a);
memset(c, 0, sizeof c);
cin>>n;
for(int i = 1; i <= n; i++){
cin>>a[i];
updata(i,a[i]); //输入初值的时候,也相当于更新了值
}

string s;
int x,y;
while(cin>>s && s[0] != 'E'){
cin>>x>>y;
if(s[0] == 'Q'){ //求和操作
int sum = getsum(y) - getsum(x-1); //x-y区间和也就等于1-y区间和减去1-(x-1)区间和
cout << sum << endl;
}
else if(s[0] == 'A'){
updata(x,y);
}
else if(s[0] == 'S'){
updata(x,-y); //减去操作,即为加上相反数
}
}

}
return 0;
}

这就是最简单的点更新区间求和了。

三、树状数组的几种变式(区间更新,区间查询)

上面介绍的是最普通的单点更新,区间查询,但如果有些时候是区间更新,单点求和怎么半,又或是区间更新,区间求和怎么办。这里将介绍各种情况该怎么写。

如果上面的单点更新,区间查询还没看懂,建议再思考再往下看。

1.单点更新、单点查询

传统数组可做

2.单点更新、区间查询

已讲解,详细看上面

3.区间更新、单点查询

这就是第一个问题,如果题目是让你把x-y区间内的所有值全部加上k或者减去k,然后查询操作是问某个点的值,这种时候该怎么做呢。如果是像上面的树状数组来说,就必须把x-y区间内每个值都更新,这样的复杂度肯定是不行的,这个时候,就不能再用数据的值建树了,这里我们引入差分,利用差分建树。

假设我们规定A[0]=0;A[0] = 0;

则有 A[i]=Σij=1D[j];(D[j]=A[j]A[j1])A[i] = Σij = 1D[j];(D[j] = A[j] - A[j-1]),即前面i项的差值和,这个有什么用呢?例如对于下面这个数组

A[]=123569A[] = 1 2 3 5 6 9
D[]=111213D[] = 1 1 1 2 1 3

如果我们把[2,5]区间内值加上2,则变成了

A[]=145789A[] = 1 4 5 7 8 9
D[]=131211D[] = 1 3 1 2 1 1

发现了没有,当某个区间[x,y][x,y]值改变了,区间内的差值是不变的,只有D[x]D[x]D[y+1]D[y+1]的值发生改变,至于为什么我想我就不用解释了吧。

所以我们就可以利用这个性质对D[]D[]数组建立树状数组,代码为:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
 1 int n,m;
2 int a[50005] = {0},c[50005]; //对应原数组和树状数组
3
4 int lowbit(int x){
5 return x&(-x);
6 }
7
8 void updata(int i,int k){ //在i位置加上k
9 while(i <= n){
10 c[i] += k;
11 i += lowbit(i);
12 }
13 }
14
15 int getsum(int i){ //求D[1 - i]的和,即A[i]值
16 int res = 0;
17 while(i > 0){
18 res += c[i];
19 i -= lowbit(i);
20 }
21 return res;
22 }
23
24 int main(){
25 cin>>n;27 for(int i = 1; i <= n; i++){
28 cin>>a[i];
29 updata(i,a[i] - a[i-1]); //输入初值的时候,也相当于更新了值
31 }
32
33 //[x,y]区间内加上k
34 updata(x,k); //A[x] - A[x-1]增加k
35 updata(y+1,-k); //A[y+1] - A[y]减少k
36
37 //查询i位置的值
38 int sum = getsum(i);
39
40 return 0;
41 }

这样就把,原来要更新一个区间的值变成了只需要更新两个点。也很容易理解吧。

4.区间更新、区间查询

上面我们说的差值建树状数组,得到的是某个点的值,那如果我既要区间更新,又要区间查询怎么办。这里我们还是利用差分,由上面可知

ni=1A[i]=ni=1ij=1D[j];∑ni = 1A[i] = ∑ni = 1 ∑ij = 1D[j];

A[1]+A[2]+...+A[n]A[1]+A[2]+...+A[n]

$= (D[1]) + (D[1]+D[2]) + … + (D[1]+D[2]+…+D[n]) $

=nD[1]+(n1)D[2]+...+D[n]= n*D[1] + (n-1)*D[2] +... +D[n]

=n(D[1]+D[2]+...+D[n])(0D[1]+1D[2]+...+(n1)D[n])= n * (D[1]+D[2]+...+D[n]) - (0*D[1]+1*D[2]+...+(n-1)*D[n])

所以上式可以变为ni=1A[i]=nni=1D[i]ni=1(D[i](i1));∑ni = 1A[i] = n*∑ni = 1D[i] - ∑ni = 1( D[i]*(i-1) );

如果你理解前面的都比较轻松的话,这里也就知道要干嘛了,维护两个数状数组sum1[i]=D[i]sum2[i]=D[i](i1);,sum1[i] = D[i],sum2[i] = D[i]*(i-1);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
int n,m;
int a[50005] = {0};
int sum1[50005]; //(D[1] + D[2] + ... + D[n])
int sum2[50005]; //(1*D[1] + 2*D[2] + ... + n*D[n])

int lowbit(int x){
return x&(-x);
}

void updata(int i,int k){
int x = i; //因为x不变,所以得先保存i值
while(i <= n){
sum1[i] += k;
sum2[i] += k * (x-1);
i += lowbit(i);
}
}

int getsum(int i){ //求前缀和
int res = 0, x = i;
while(i > 0){
res += x * sum1[i] - sum2[i];
i -= lowbit(i);
}
return res;
}

int main(){
cin>>n;
for(int i = 1; i <= n; i++){
cin>>a[i];
updata(i,a[i] - a[i-1]); //输入初值的时候,也相当于更新了值
}

//[x,y]区间内加上k
updata(x,k); //A[x] - A[x-1]增加k
updata(y+1,-k); //A[y+1] - A[y]减少k

//求[x,y]区间和
int sum = getsum(y) - getsum(x-1);

return 0;
}

再附赠两道模板题目,可以自行写一下以便理解

区间修改、单点查询模板题目

区间修改、区间查询模板题目

PS:这里大致归纳了一维树状数组的所有要使用到的东西,二维建树以及更多变式就不说了,具体问题再具体分析。