向量A:(0,1)A:(0,1)A:(0,1) B:(1,12)B:(1,\frac{1}{2})B:(1,21) C:(2,1)C:(2,1)C:(2,1)→AB=(1,−12)=B−A\underset{AB}{\rightarrow}=(1,- \frac{1}{2}) = B-AAB→=(1,−21)=B−A→BC=(1,12)=C−B\underset{BC}{\rightarrow}=(1, \frac{1}{2}) = C-BBC→=(1,21)=C−B⊥:→AB⋅→AB=0\perp :\underset{AB}{\rightarrow}\cdot \underset{AB}{\rightarrow}=0⊥:AB→⋅AB→=0 乘积和∥:→AB=λ→BC\parallel :\underset{AB}{\rightarrow}= \lambda \underset{BC}{\rightarrow}∥:AB→=λBC→ 交叉相乘判等点点距菜鸡不会d=(x1−x2)2+(y1−y2)2d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}d=(x1−x2)2+(y1−y2)2点线距l:Ax+By+C=0l:Ax+By+C=0l:Ax+By+C=0A:(x0,y0)A:(x_0,y_0)A:(x0,y0)d=∣Ax0+By0+C∣A2+B2d=\frac{|Ax_0+By_0+C|}{\sqrt{A^2+B^2}}d=A2+B2∣Ax0+By0+C∣线线距l1:Ax+By+C1=0l_1:Ax+By+C_1=0l1:Ax+By+C1=0l2:Ax+By+C2=0l_2:Ax+By+C_2=0l2:Ax+By+C2=0d=∣C1−C2∣A2+B2d=\frac{|C_1-C_2|}{\sqrt{A^2+B^2}}d=A2+B2∣C1−C2∣